Feedback control of thermal lensing in a high optical power cavity.

نویسندگان

  • Y Fan
  • C Zhao
  • J Degallaix
  • L Ju
  • D G Blair
  • B J J Slagmolen
  • D J Hosken
  • A F Brooks
  • P J Veitch
  • J Munch
چکیده

This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-situ Characterization of the Thermal State of Resonant Optical Interferometers via Tracking of their Higher-order Mode Resonances

Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this te...

متن کامل

Theoretical comparison analysis of long and short external cavity semiconductor laser

In this paper, considering optical feedback as an optical injection, and taking in to account round-trip time role in the external cavity, a standard small signal analysis is applied on laser rate equations. By considering the relaxation oscillation (f2) and external cavity frequencies (f) ratio for semiconductor laser, field amplitude response gain, optical phase and carrier number for long ex...

متن کامل

Novel technique for thermal lens measurement in commonly used optical components.

The absorption of light in transmissive optics cause a thermally induced effect known as thermal lensing. This effect provokes an often undesired change of a laser beam transmitted by the optic. In this paper we present a measurement method that allows us to determine thermal lensing in commonly used optical components. The beam influenced by the thermal lens is expanded into the eigenmodes of ...

متن کامل

Composite Cavity Fiber Laser with Asymmetric Output Intensity and Wavelength

The composite cavity fiber laser (CCFL) is relatively simple in its fabrication, as it is essentially three wavelength matched Bragg gratings in a section of doped fiber. By using internal feedback with unequal sub-cavity lengths, unidirectional CCFLs with significantly asymmetric output power from its two outputs can be achieved. Preliminary results also show that it is possible for the lasing...

متن کامل

All-reflective coupling of two optical cavities with 3-port diffraction gratings.

The shot-noise limited sensitivity of Michelson-type laser interferometers with Fabry-Perot arm cavities can be increased by the so-called power-recycling technique. In such a scheme the power-recycling cavity is optically coupled with the interferometer's arm cavities. A problem arises because the central coupling mirror transmits a rather high laser power and may show thermal lensing, thermo-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 79 10  شماره 

صفحات  -

تاریخ انتشار 2008